当前位置: 首页 » 新闻中心 » 科技概览 » 正文

    生物特征识别技术

    放大字体  缩小字体 发布日期:2014-01-15  浏览次数:11019
    核心提示: 生物特征识别技术,通过计算机与各种传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性和行为特征,来进
       生物特征识别技术,通过计算机与各种传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性和行为特征,来进行个人身份的鉴定。网络信息化时代的一大特征就是个人身份的数字化和隐性化。如何准确鉴定一个人的身份,保护信息安全是当今信息化时代必须解决的一个关键性社会问题。目前,中国的各种管理大部分使用证件、磁卡、IC卡和密码,这些手段无法避免伪造或遗失,密码也很容易被窃取或遗忘。这些都给管理者和使用者带来很大不方便。生物特征身份鉴别方法可以避免这些麻烦。因此,这一技术已成为身份鉴别领域的研究热点。
    生物识别技术(Biometric Identification Technology)是利用人体生物特征进行身份认证的一种技术。生物特征是唯一的(与他人不同),可以测量或可自动识别和验证的生理特性或行为方式,分为生理特征和行为特征

      生理和行为特征统称为生物特征。生理特征与生俱来,多为先天性的;行为特征则是习惯使然,多为后天性的。并非所有的生物特征都可用于个人的身份鉴别。身份鉴别可利用的生物特征必须满足以下几个条件:

      第一,普遍性:即必须每个人都具备这种特征。
      第二,唯一性:即任何两个人的特征是不一样的。
      第三,可测量性:即特征可测量。
      第四,稳定性:即特征在一段时间内不改变。

      当然,在应用过程中,还要考虑其他的实际因素,比如:识别精度、识别速度、对人体无伤害、被识别者的接受性等等。

      现在常用的生物特征有:人脸识别、虹膜识别、手形识别、指纹识别、掌纹识别、签名识别、声音识别等。


    生物识别技术的发展


      人类利用生物特征识别的历史可追溯到古代埃及人通过测量人体各部位的尺寸来进行身份鉴别,现代生物识别技术始于70年代中期,由于早期的识别设备比较昂贵,因而仅限于安全级别要求较高的原子能实验、生产基地等。现在由于微处理器及各种电子元器件成本不断下降,精度逐渐提高,生物识别系统逐渐应用于商业上的授权控制如门禁、企业考勤管理系统安全认证等领域。

      用于生物识别的生物特征有手形、指纹、脸形、虹膜、视网膜、脉搏、耳廓等,行为特征有签字、声音、按键力度等。基于这些特征,人们已经发展了手形识别、指纹识别、面部识别、发音识别、虹膜识别、签名识别等多种生物识别技术。

      目前人体特征识别技术市场上占有率最高的是指纹机和手形机,这两种识别方式也是目前技术发展中最成熟的。IBG(International Biometric Group)在2000年生物识别技术市场的分析报告中得出1999年度各种生物识别技术产品利润的市场占有率如右图所示。


    生物识别技术优势


      生物识别技术是目前最为方便与安全的识别技术,它不需要记住复杂的密码,也不需随身携带钥匙、智能卡之类的东西。生物识别技术认定的是人本身,没有什么能比这种认证方式更安全、更方便了。由于每个人的生物特征具有与其他人不同的唯一性和在一定时期内不变的稳定性,不易伪造和假冒,所以利用生物识别技术进行身份认定,安全、可靠、准确。此外,生物识别技术产品均借助于现代计算机技术实现,很容易配合电脑和安全、监控、管理系统整合,实现自动化管理。指纹机和手形机的市场占有率为34%和26%。


    指纹识别


      指纹识别技术是指通过比较不同人指纹中的特征点不同来区分不同人的身份。指纹识别技术通常由三个部分组成:对指纹图像进行预处理;提取特征值,并形成特征值模板;指纹特征值比对。 

        指纹图像预处理的目的是为了减少噪声干扰的影响,以便有效提取指纹特征值。常用的预处理方法有图像增强、图像平滑、二值化、图像细化等。 

        特征提取的目的就是从预处理后的指纹图像中,提取出能够表达该指纹图像与众不同的特征点的过程。最初特征提取是基于图像的,从图像整体中提取出特征进行比较,但该方法的精度和性能较低。现在一般采用基于特征点的方法,从图像中提取反应指纹特性的全局特征(如纹形、模式区、核心区、三角点、纹数等)和局部特征(如终结点、分叉点、分歧点、孤立点、环点等)。得到特征点后就可以对特征点进行编码形成特征值模板。 

        指纹特征值比对就是把当前获得的指纹特征值与存储的指纹特征值模板进行匹配,并给出相似度的过程。 


    虹膜识别


      虹膜识别技术是利用虹膜终身不变性和差异性的特点来识别身份的,虹膜是一种在眼睛中瞳孔内的织物状的各色环状物,每个虹膜都包含一个独一无二的基于水晶体、细丝、斑点、凹点、皱纹和条纹等特征的结构。虹膜在眼睛的内部,用外科手术很难改变其结构;由于瞳孔随光线的强弱变化,想用伪造的虹膜代替活的虹膜是不可能的。目前世界上还没有发现虹膜特征重复的案例,就是同一个人的左右眼虹膜也有很大区别。除了白内障等原因外,即使是接受了角膜移植手术,虹膜也不会改变。虹膜识别技术与相应的算法结合后,可以到达十分优异的准确度,即使全人类的虹膜信息都录入到一个数据中,出现认假和拒假的可能性也相当小。
       
      和常用的指纹识别相比,虹膜识别技术操作更简便,检验的精确度也更高。统计表明,到目前为止,虹膜识别的错误率是各种生物特征识别中最低的,并且具有很强的实用性,386以上计算机CCD摄像机即可满足对硬件的需求。


    视网膜识别


      人体的血管纹路也是具有独特性的,人的视网膜上面血管的图样可以利用光学方法透过人眼晶体来测定。用于生物识别的血管分布在神经视网膜周围,即视网膜四层细胞的最远处。如果视网膜不被损伤,从三岁起就会终身不变。同虹膜识别技术一样,视网膜扫描可能具有最可靠、最值得信赖的生物识别技术,但它运用起来的难度较大。视网膜识别技术要求激光照射眼球的背面以获得视网膜特征的唯一性。

      视网膜技术的优点:视网膜是一种极其固定的生物特征,因为它是“隐藏”的,故而不易磨损,老化或是为疾病影响;非接触性的;视网膜是不可见的,故而不会被伪造。缺点是:视网膜技术未经过任何测试,可能会给使用者带来健康的损坏,这需要进一步的研究;对于消费者,视网膜技术没有吸引力;很难进一步降低它的成本。

      虹膜相对而言是一个较新的生物特征。1983年,Flom与Safir申请了虹膜识别专利保护,使得虹膜识别方面的研究很少。1993年,Daugman发表了关于虹膜自动识别算法的开创性工作,奠定了世界上首个商业虹膜自动识别系统的基础。随着Flom和Safir专利在2005年的失效和CASIA及ICE2005中虹膜数据集的提供,虹膜识别算法的研究越来越蓬勃。ICE2006首次对虹膜识别算法性能进行了测试。 

        虹膜识别中需要解决如下两个难点问题:一是虹膜图像的获取,二是实现高性能的虹膜识别算法。


    面部(人脸)识别


      面部识别技术通过对面部特征和它们之间的关系(眼睛,鼻子和嘴的位置以及它们之间的相对位置)来进行识别,用于扑捉面部图像的两项技术为标准视频和热成像技术:标准视频技术通过视频摄像头摄取面部的图像,热成像技术通过分析由面部的毛细血管的血液产生的热线来产生面部图像,与视频摄像头不同,热成像技术并不需要在较好的光源,即使在黑暗情况下也可以使用。

      面部识别技术优点是:非接触性的。缺点是:要比较高级的摄像头才可有效高速地扑捉面部图像;使用者面部的位置与周围的光环境都可能影响系统的精确性,而且面部识别也是最容易被欺骗的;另外,对于因人体面部的如头发,饰物,变老以及其他的变化可能需要通过人工智能技术来得到补偿;对于采集图像的设备会比其他技术昂贵得多。这些因素限制了面部识别技术广泛地运用。

      人脸识别作为一种基于生理特征的身份认证技术,与目前广泛应用的以密码、IC卡为媒介的传统身份认证技术相比,具有不易伪造、不易窃取、不会遗忘的特点;而人脸识别与指纹、虹膜、掌纹识别等生理特征识别技术相比,具有非侵犯性、采集方便等特点。因而人脸识别是一种非常自然、友好的生物特征识别认证技术。 

        人脸识别技术包括图像或视频中进行人脸检测、从检测出的人脸中定位眼睛位置、然后提取人脸特征、最后进行人脸比对等一系列相关的技术。 

        最早的人脸识别系统建成于20世纪60年代,该系统以人脸特征点的间距、比率等参数作为特征,构建了一个半自动的人脸识别系统。此时的人脸识别研究多集中于研究如何提取特征点进行人脸识别,如人脸特征器官(眼角、嘴角、鼻孔)的相对位置、大小、形状、面积及彼此间的几何关系等。由于这些特征点难以准确定位、鲁棒性差,因而采用这些方法的人脸识别系统的性能都很低。 

        自20世纪80年代开始,人脸识别技术出现了基于面部图像的方法。与基于特征点的方法相比,基于面部图像的方法不是提取人脸特征器官这一高层特征,而是将人脸作为一个图像整体,从图像中提取反映人脸特性的特征如DCT变换特征、小波特征、Gabor特征等等。基于面部图像的方法由于利用了更多的底层信息,以及统计模式识别方法的引入,使得这类方法具有非常高的识别率和非常好的鲁棒性。由于基于面部图像的人脸识别算法具有很高性能,目前已经出现了不少推广人脸识别技术的厂商,如国内的北京海鑫科金高科技股份有限公司、国外的L1ID等。 

        为了评测基于面部图像的人脸识别算法的性能。美国ARPA和ARL于1993年至1996年建立了FERET数据库,用于评测当时的人脸识别算法的性能。共举行了三次测试FERET94、FERET95、FERET96。FERET测试的结果指出,光照、姿态和年龄变化会严重影响人脸识别的性能。 

        FERET的测试结果也表明了基于面部图像的方法的缺点。人脸是一个三维非刚体,具有姿态、表情等变化,人脸图像采集过程中易受到光照、背景、采集设备的影响。这些影响会降低人脸识别的性能。 

        为了克服姿态变化对人脸识别性能的影响,也为了进一步提高人脸识别性能,20世纪90年代后期,一些研究者开始采用基于3D的人脸识别算法。这些算法有的本身就采用三维描述人脸,有的则用二维图像建立三维模型,并利用三维模型生成各种光照、姿态下的合成图像,利用这些合成图像进行人脸识别。 

        2000年后,人脸识别算法逐渐成熟,出现了商用的人脸识别系统。为了评测这些商用系统的性能,也作为FERET测试的延续,美国有关机构组织了FRVT2000、FRVT2002、FRVT2006测试。测试结果表明,人脸识别错误率在FRVT2006上下降了至少一个数量级,这种性能的提升在基于图像的人脸识别算法和基于三维的人脸识别算法上都得到体现。


    掌纹识别


      掌纹与指纹一样也具有稳定性和唯一性,利用掌纹的线特征、点特征、纹理特征、几何特征等完全可以确定一个人的身份,因此掌纹识别是基于生物特征身份认证技术的重要内容。目前采用的掌纹图象主要分脱机掌纹和在线掌纹两大类。脱机掌纹图象,是指在手掌上涂上油墨,然后在一张白纸上按印,然后通过扫描仪进行扫描而得到数字化的图象。在线掌纹则是用专用的掌纹采样设备直接获取,图象质量相对比较稳定。随着网络、通信技术的发展,在线身份认证将变得更加重要。

      掌纹识别一般用作整体分离后的同一认定。有将其用做批量商品的防伪,以防止成箱的商品内有部分被“调包”,以部分赝品充真。也有将其用于通道口安全防范系统。


    手形识别


      手形指的是手的外部轮廓所构成的几何图形.手形识别技术中,可利用的手形几何信息包括手指不同部位的宽度、手掌宽度和厚度、手指的长度等。经过生物学家大量实验证明,人的手形在一段时期具有稳定性,且两个不同人手形是不同的,即手形作为人的生物特征具有唯一性,手形作为生物特征也具有稳定性,且手形也比较容易采集,故可以利用手形对人的身份进行识别和认证。

      手形识别是速度最快的一种生物特征识别技术,它对设备的要求较低,图像处理简单,且可接受程度较高。由于手形特征不像指纹和掌纹特征那样具有高度的唯一性,因此,手形特征只用于认证,满足中/低级的安全要求。


    红外温谱图


      人的身体各个部位都在向外散发热量,而这种散发热量的模式就是一种每人都不同的生物特征。通过红外设备可以获得反映身体各个部位的发热强度的图像,这种图像称为温谱图。拍摄温谱图的方法和拍摄普通照片的方法类似,因此,可以用人体的各个部位来进行鉴别,比如可对面部或手背静脉结构进行鉴别来区分不同的身份。

      温谱图的数据采集方式决定了利用温谱图的方法可以用于隐蔽的身份鉴定。除了用来进行身份鉴别外,温谱图的另一个应用是吸毒检测,因为人体服用某种毒品后,其温谱图会显示特定的结构。 

      温谱图的方法具有可接受性,因为数据的获取是非接触式的,具有非侵犯性。但是,人体的温谱值受外界环境影响很大,对于每个人来说不是完全固定的。目前,已经有温谱图身份鉴别的产品,但是由于红外测温设备的昂贵价格,使得该技术不能得到广泛的应用。


    人耳识别


      人耳识别技术是20世纪90年代末开始兴起的一种生物特征识别技术。人耳具有独特的生理特征和观测角度的优势,使人耳识别技术具有相当的理论研究价值和实际应用前景。从生理解剖学上,人的外耳分耳廓和外耳道。人耳识别的对象实际上是外耳裸露在外的耳廓,也就是人们习惯上所说的“耳朵”。一套完整的人耳自动识别系统一般包括以下几个过程:人耳图像采集、图像的预处理、人耳图像的边缘检测与分割、特征提取、人耳图像的识别。目前的人耳识别技术是在特定的人耳图像库上实现的,一般通过摄像机或数码相机采集一定数量的人耳图像,建立人耳图像库,动态的人耳图像检测与获取尚未实现。
      
      与其它生物特征识别技术比较人耳识别具有以下几个特点:(1)与人脸识别方法比较,耳识别方法不受面部表情、化妆品和胡须变化的影响,同时保留了面部识别图象采集方便的优点,与人脸相比,整个人耳的颜色更加一致、图像尺寸更小,数据处理量也更小。(2)与指纹识别方法比较,耳图象的获取是非接触的,其信息获取方式容易被人接受。(3)与虹膜识别方法比较,耳图像采集更为方便。并且,虹膜采集装置的成本要高于耳采集装置。

    味纹识别


      人的身体是一种味源,人类的气味,虽然会受到饮食、情绪、环境、时间等因素的影响和干扰,其成分和含量会发生一定的变化,但作为由基因决定的那一部分气味——味纹却始终存在,而且终生不变,可以作为识别任何一个人的标记。

      由于气味的性质相当稳定,如果将其密封在试管里制成气味档案,足足可以保存3年,即使是在露天空气中也能保存18小时。科学家告诉我们,人的味纹从手掌中可以轻易获得。首先将手掌握过的物品,用一块经过特殊处理的棉布包裹住,放进一个密封的容器,然后通入氮气,让气流慢慢地把气味分子转移到棉布上,这块棉布就成了保持人类味纹的档案。可以利用训练有素的警犬或电子鼻来识别不同的气味。

    基因(DNA)识别


      DNA(脱氧核糖核酸)存在于一切有核的动(植)物中,生物的全部遗传信息都贮存在DNA分子里。DNA 识别是利用不同的人体的细胞中具有不同的DNA 分子结构。人体内的DNA 在整个人类范围内具有唯一性和永久性。因此, 除了对双胞胎个体的鉴别可能失去它应有的功能外, 这种方法具有绝对的权威性和准确性。不象指纹必须从手指上提取,DNA 模式在身体的每一个细胞和组织都一样。这种方法的准确性优于其他任何生物特征识别方法, 它广泛应用于识别罪犯。它的主要问题是使用者的伦理问题和实际的可接受性, DNA 模式识别必须在实验室中进行, 不能达到实时以及抗干扰, 耗时长是另一个问题。这就限制了DNA 识别技术的使用; 另外, 某些特殊疾病可能改变人体DNA 的结构, 系统无法对这类人群进行识别。


    基于行为特征的生物识别技术

    步态识别


      步态是指人们行走时的方式,这是一种复杂的行为特征。步态识别主要提取的特征是人体每个关节的运动。尽管步态不是每个人都不相同的,但是它也提供了充足的信息来识别人的身份。步态识别的输入是一段行走的视频图像序列,因此其数据采集与脸相识别类似,具有非侵犯性和可接受性。但是,由于序列图像的数据量较大,因此步态识别的计算复杂性比较高,处理起来也比较困难。尽管生物力学中对于步态进行了大量的研究工作,基于步态的身份鉴别的研究工作却是刚刚开始。到目前为止,还没有商业化的基于步态的身份鉴别系统。
    击键识别

      这是基于人击键时的特性如: 击键的持续时间、击不同键之间的时间、出错的频率以及力度大小等而达到进行身份识别的目的。上世纪80年代初期,美国国家科学基金和国家标准局研究证实,击键方式是一种可以被识别的动态特征。

    签名识别


      签名作为身份认证的手段已经用了几百年了,而且我们都很熟悉在银行的格式表单中签名作为我们身份的标志。将签名数字化是这样一个过程:测量图像本身以及整个签名的动作——在每个字母以及字母之间的不同的速度、顺序和压力。签名识别易被大众接受,是一种公认的身份识别的技术。但事实表明人们的签名在不同的时期和不同的精神状态下是不一样的。 这就降低了签名识别系统的可靠性。


    兼具生理特征和行为特征的声纹识别


      声音识别本质上是一个模式识别问题。 识别时需要说话人讲一句或几句试验短句,对它们进行某些测量,然后计算量度矢量与存储的参考矢量之间的一个(或多个) 距离函数。语音信号获取方便,并且可以通过电话进行鉴别。语音识别系统对人们在感冒时变得嘶哑的声音比较敏感;另外,同一个人的磁带录音也能欺骗语音识别系统。


    生物特征识别技术的标准化工作


      随着IT的发展,人们获取生物特征的方法也越来越多,而且可获取的生物特征种类也在不断增加。但不管生物特征识别的手段如何、获取何种生物特征,对于某一个具体的人,其相应的生物特征是确定的,因此通过多种手段获取的生物特征之间应该存在信息的共享和交换。为达到信息交互,采用统一的准则评价生物特征识别和特征信息,需要制定生物特征识别标准。
      
      目前,生物特征识别的国际标准化工作主要由ISO/IEC JTC1负责,而近期对此项工作的关注主要源于9.11恐怖袭击事件。美国为首的发达国家为防止和打击恐怖活动,提出了基于生物特征识别的国防土安全,并提出在SC17和SC27的基础上建立,在JTC1下面组建生物特征识别标准化分技术委员会,即SC37。SC37自2002年6月成立以来,一直保持着快速的标准制定速度。从当前SC37的标准制定情况可以看出在生物特征识别领域,当前最急需的是用于信息共享和信息交换的数据格式标准,其他接口、测试、轮廓类标准现在的重点还处于概念性标准研制阶段。


    生物特征识别技术的发展趋势

    多生物特征识别融合


      各种生物特征识别技术都有其一定的适用范围和要求,单一的生物特征识别系统在实际应用中显现出各自的局限性,如有些人的指纹无法提取特征,患白内障的人虹膜会发生变化等等,统计显示迄今为止,还没有一个单生物特征能达到完美无错的要求。因此,生物特征识别领域出现了一种新方向,即多种生物特征识别技术结合使用。将数据融合方法用于身份鉴别,结合多种生理和行为特征进行身份鉴别具有低错误拒绝率、特征变化的适应性强,安全可靠性高等优点,进一步精化了识别率,提高鉴别系统的可靠性。
    实时性要求

      生物特征识别系统要求大量的计算,这其中包括图像的预处理、特征提取与识别分类等。具有实时的快速计算能力是达到系统特定性能要求的关键。实现的方法基本上有两条途径:一是在软件上改进即采用高效快速算法;二是在硬件上实现。
    生物特征识别技术与传统技术相结合

      传统的用来识别身份的IC卡和生物特征识别技术的结合使用,具有广泛的应用前景。智能IC卡利用其自身的存储、计算功能,将人的生物识别特征存储在卡内,可以现场进行脱机认证,既提高了效率,又节省了联网在线查询的成本,有效地避免了“认卡不认人”的现象,以防由于卡的丢失及密码泄露而带来的损失。
     
     
    [ 新闻中心搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

     
    0条 [查看全部]  相关评论

     
    推荐图文
    推荐新闻中心
    点击排行